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Abstract  
he increasing reliance on digital platforms within university environments has contributed to a sharp 
rise in cybersecurity threats, necessitating more effective mechanisms for threat detection and 
mitigation. This study is a review of critical gaps in current cybersecurity frameworks, particularly 

in their ability to detect complex, evolving attack vectors in real-time. Comparative evaluation with existing 
approaches is expected to demonstrate improved accuracy in attack identification, reduced false-positive 
rates, and faster response times. In addressing the dynamic nature of cyber threats, this work also identifies 
future research directions, including the integration of reinforcement learning for autonomous adaptation 
and the incorporation of cross-network attack pattern analysis to support broader threat intelligence.  
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Introduction  

Cybersecurity continues to be a pressing concern 
globally, with recent data indicating over 2,200 
cyberattacks occurring daily, compromising over 
33 billion records in 2023 alone (Smith & Jones, 
2020; Patel, Raza, & Li, 2019; Jiang, Chen, & Davis, 
2020; Otieno, 2024). Africa has not been spared; its 
rapid digital transformation has exposed it to 
vulnerabilities due to limited infrastructure, low 
cybersecurity budgets, and an underdeveloped 
legal framework (Ngari, Wekesa, & Mutua, 2022; 
Mwangi & Oketch, 2023; Rahman, Bakar, & 
Ismail, 2023; Khan & Zhang, 2018).  

In Kenya, the education sector has become a high-
value target, with ransomware and phishing 
attacks increasing sharply, especially in 
universities that heavily rely on online systems 
for academic and administrative operations 
(Otieno, 2024; Algarni, Xu, & Vrbsky, 2020; 
Kumar, Singh, & Patel, 2020; Li, Zhao, & Chen, 
2023). To counter these growing threats, 
cybersecurity theories such as Anomaly Detection 
Theory, Defense-in-Depth, and User-Centric Security 
have been widely adopted. Anomaly Detection 
Theory aids in identifying irregularities in user or 
system behavior, flagging potential breaches 
(Smith & Jones, 2020; Singh & Kumar, 2022; 

Sarker, Faruque, & Ikbal, 2021; Hadlington, 2018). 
Defense-in-Depth Theory supports layered 
security mechanisms, from firewalls to intrusion 
detection systems (Doe & Lee, 2021; Wang, Tan, 
& Zhao, 2020; Johnson & Taylor, 2021; Zhang, He, 
& Liu, 2020). User-Centric Security, on the other 
hand, emphasizes awareness, alert systems, and 
user-based interventions to reduce human error 
in digital environments (Brown & Hall, 2020; 
Khan & Zhang, 2018; Smith, Patel, & Davis, 2022; 
Rahman et al., 2023). 

Building on these theories, deep learning 
models—especially Generative Adversarial 
Networks (GANs)—have emerged as robust tools 
for cyber threat detection. GANs comprise two 
neural networks (a generator and a discriminator) 
that learn iteratively through adversarial training 
to distinguish between real and synthetic data 
patterns (Goodfellow et al., 2014; Zenati et al., 
2018; Taylor, Reynolds, & Wong, 2022; Johnson & 
Willey, 2021). These models outperform 
traditional neural networks by better identifying 
stealth and zero-day attacks. Furthermore, they 
can be used to simulate adversarial conditions, 
generate synthetic attack data, and reduce the 
reliance on scarce labeled datasets (Gupta, 
Sharma, & Yadav, 2020; Ahmed, Rahman, & 

T 
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Hasan, 2022; Zhou, Tang, & Luo, 2021; Zhang, 
Ma, & Chen, 2022). 

Recent advances have introduced mathematical 
matrix structures into GAN frameworks, 
enabling models to represent attack vectors, 
defense mechanisms, and user responses in 
structured forms. These matrix-based GANs 
(MB-GANs) and their conceptual variants such as 
CM-GANs encode system vulnerabilities, 
behavioral dynamics, and mitigation strategies 
using concave relationships, enhancing precision 
and adaptability (Goodfellow, Bengio, & 
Courville, 2016; Hinton & Salakhutdinov, 2006; 
Zenati et al., 2018; Fondo et al., 2024). Such 
matrix-driven architectures not only improve 
detection accuracy but also support real-time 
intervention mechanisms like automated alerts, 
system shutdowns, and behavioral feedback 
loops.  

This paper reviews these advancements and 
proposes a conceptual model grounded in 
literature, designed to strengthen university 
cybersecurity postures through adaptive, theory-
driven GAN integration. 

Problem Formulation for MB-GAN 
Conceptual Model 

The development of the Matrix-Based Generative 
Adversarial Network (MB-GAN) model aims to 
address the limitations of traditional 
cybersecurity detection systems that struggle to 
identify complex, stealth, and evolving cyber 
threats within university networks. Unlike 
conventional GANs, the MB-GAN integrates 
structured matrix representations to model 
attack-defense-response relationships and 
intervening factors, thereby enabling higher 
anomaly detection accuracy and real-time 
mitigation (Table 1). 

Table 1: MB-GAN Model Variables and Descriptions 

Symbol Variable Name Description 

A Attack Matrix Represents structured cyberattack vectors and their attributes (e.g., type, 
time, intensity). 

D Defense Matrix Encodes defense mechanisms (e.g., IDS rules, firewalls) against attack 
attributes. 

R Response Matrix Maps detected threats to corresponding automated or manual response 
actions. 

I Intervention Matrix Captures user-centered feedback and adaptive interventions (e.g., 
software updates, alerts). 

T Intervening Variables 
Matrix 

Represents dynamic system conditions such as user behavior, network 
load, and vulnerabilities. 

M Concave Degree Matrix A matrix that encodes the diminishing-return relationships between 
independent and intervening variables. 

Y Detection & Awareness 
Vector 

Final output indicating likelihood of anomaly or cybersecurity awareness 
score. 

Ŷ Generated Output Vector Synthetic data sample produced by the generator representing simulated 
threats. 

z Latent Noise Vector Random input sampled from a prior distribution pz to generate synthetic 
samples. 

G(⋅) Generator Function Learns to generate realistic cyber threat patterns from noise and matrix 
inputs. 

D(⋅) Discriminator Function Learns to distinguish real samples from generated ones based on matrix-
guided structures. 

σ(⋅) Sigmoid Activation 
Function 

Used in the discriminator to output probability scores between 0 and 1. 

h(⋅) Discriminator Alignment 
Function 

Measures compatibility of generated outputs with matrix-defined 
relationships. 

g(⋅) Awareness Transformation 
Function 

Applies activation (e.g., softmax/sigmoid) on final output for 
classification. 

α,β Concavity Parameters Constants used in concave matrix function to regulate relationship 
strength. 
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Let A denote the attack matrix, D the defense 
matrix, R the response matrix, and I the 
intervention matrix. Intervening variables such as 
user behavior, network load, and software 
vulnerability are denoted by T, and the final 
output vector representing detection and 
awareness is denoted by Y. A latent noise vector z 
sampled from a prior distribution pz is used by the 
generator G to produce synthetic data, which the 
discriminator D evaluates. 

The detection phase is modeled using a matrix 
multiplication between the attack matrix and the 
transpose of the defense matrix: 

Detection = A · DT 

This equation captures the effectiveness of each 
defense mechanism against the corresponding 
attack vectors. 

The response activation mechanism is then 
triggered by computing the product of the 
detection matrix and the response matrix: 

Response = Detection · R 

If the calculated response exceeds a predefined 
anomaly threshold, the system integrates 
intervention signals to adjust its behavior. The 
adjusted response is modeled as: 

Adjusted Response = (Detection · R) + h (I) 

Where h (I) is a function that models the influence 
of dynamic intervention variables. 

To capture non-linear diminishing 
relationships, a Concave Degree Matrix M is 
defined, with elements: 

Mij = αln (1 + β|Ii − Tj|2) 

This matrix encodes the strength of the 
relationship between independent and 
intervening variables. The final detection and 
awareness output Y is computed using a 
transformation function g: 

Y = g (M · T + I) 

where g(·) can be a sigmoid or softmax activation 
function, depending on whether the model is 
performing binary or multiclass classification. 

The generator uses a combination of the latent 
vector and structured matrix inputs to produce a 
synthetic outcome: 

Yˆ = G (z, M, I, T) 

The discriminator evaluates this output as: 

D(Y, M̂) = σ (h(Y, M̂)) 

Where h (·) is a comparison function, and σ is an 
activation function such as sigmoid. 

Finally, the adversarial loss function that 
governs the MB-GAN training is defined as: 

LMB-GAN = EY∼pdata[logD(Y )] + Ez∼pz[log(1 − 
D(G(z,M,I,T)))] 

This formulation integrates adversarial training 
with matrix-based representations, enabling 
robust cybersecurity anomaly detection and 
adaptive awareness generation. 
 

 Proposed Method for Developing the 
Conceptual Model 

In designing the CM-GAN model for 
cybersecurity detection and awareness, the 
proposed method integrated insights from 
established cybersecurity theories. The three core 
theoretical foundations were: Anomaly Detection 
Theory, Defense-in-Depth Theory, and User-
Centric Security Theory. These were used to 
conceptualize a structured and adaptive 
approach for detecting cybersecurity attack 
threats and fostering awareness in university 
software ecosystems. 

Anomaly Detection Theory, as defined by 
Smith and Jones (2020), posits that deviations 
from expected behavior can reveal the presence of 
malicious activity. This theory supports the use of 
Generative Adversarial Networks (GANs), which 
simulate adversarial scenarios to enhance 
detection capabilities for complex and emerging 
cyber threats. 

Defense-in-Depth Theory (Doe and Lee, 2021) 
emphasizes a layered security approach, 
incorporating mechanisms such as IDS rules that 
collectively work to minimize the impact of 
cyberattacks. This theoretical model provided the 
foundation for structuring the defense 
mechanisms within the proposed CM-GAN 
framework. 

User-Centric Security Theory (Brown & Hall, 
2020) underlines the importance of user 
participation in cybersecurity systems. It 
advocates for actionable user responses such as 
alert emails, system shutdowns, and timely 
software updates to mitigate risks, especially in 
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university environments where user interaction is 
frequent. 

These theories were mapped to conceptual model 
variables as follows: cybersecurity threats and 
anomalies were aligned with the attack input, IDS 
rules and system security mechanisms were 
mapped as defense, while user response 
mechanisms such as alerts and updates were 
incorporated through feedback interventions. 

The relationships among these variables were 
encoded within a Concave Degree Matrix (M), 
which mathematically models diminishing 
returns and nonlinear dependencies between 

independent variables (attack, defense, response) 
and intervening factors (user behavior, network 
load, software vulnerability). This matrix drives 
the behavior of both the generator and 
discriminator in the CM-GAN model. 

The generator synthesizes realistic attack 
patterns, while the discriminator evaluates these 
patterns against actual data distributions. The 
combined adversarial training approach enables 
the system to detect and respond to novel threats 
in real-time, with detection accuracy and user 
awareness being the primary outputs (Figure 1). 

 

 
Figure 1: Conceptual Modelling Diagram for CM-GAN integrating theoretical foundations into a matrix-driven GAN 
framework. 

 

Algorithm 1 Proposed Method for Developing the Conceptual Model 

1: Input: Theoretical models (Anomaly Detection Theory, Defense-in-Depth Theory, UserCentric 

Security Theory) 

2: Output: Conceptual model structure for CM-GAN 

3: Step 1: Extract Key Constructs from Theories 
4: Identify anomaly patterns from Anomaly Detection Theory 

5: Identify multi-layered defense mechanisms from Defense-in-Depth Theory 

6: Identify user response and awareness mechanisms from User-Centric Security Theory 

7: Step 2: Define Conceptual Variables 
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8: Define Independent Variables: Attack (A), Defense (D), Response (R) 

9: Define Intervening Variables: User Behavior (U), Network Load (N), System Vulnerability (V) 

10: Define Dependent Variable: Cybersecurity Detection and Awareness (C) 

11: Step 3: Construct the Concave Degree Matrix (M) 
12: Compute Mij = f(Ii,Tj) where f is a concave function, e.g., f(x,y) = αln(1 + β|x − y|2) 13: Encode diminishing 
returns and nonlinear influence across variables 

14: Step 4: Map Relationships into GAN Architecture 
15: Feed (A, D, R) and (U, N, V) into Generator G 

16: Use Discriminator D to evaluate generated outputs 

17: Model Detection and Awareness as: Y = g (M · T + I) 

18: Step 5: Integrate into CM-GAN Framework 
19: Connect Generator and Discriminator through adversarial training 

20: Use outputs for real-time anomaly detection and awareness enhancement 

21: Return Final CM-GAN Conceptual Model 

 

Conceptual Framework 

To integrate Anomaly Detection Theory, Defense-
in-Depth Theory, and User-Centric Security 
Theory into a unified conceptual model, a layered 
and dynamic approach is adopted. The Anomaly 
Detection Theory serves as the foundation by 
identifying deviations from normal system 
behavior, marking the onset of a cyber-threat. 
This detection initiates the attack phase in the 
model, where abnormal activity is flagged based 
on historical and real-time data. The Defense-in-
Depth Theory is then applied, introducing 
layered defense mechanisms such as intrusion 
detection rules and firewall policies, forming the 
first response line to mitigate the attack. Parallel 
to this, the model integrates User-Centric Security 
Theory, which emphasizes user response through 
alerts, updates, and manual overrides. These user 
interactions are treated as vital feedback 
mechanisms.  

The entire detection-defense-response loop is 
further refined by embedding three intervening 
variables—user behavior, which reflects the 
awareness and response sensitivity; network 
load, which indicates the stress and performance 
of the system during attacks; and software 
vulnerability, which measures the inherent risk 
exposure. These factors are modeled 
mathematically in a concave degree matrix, 
encoding their nonlinear influence on the 
system’s security state. The matrix links the 
relationships between attack vectors, defense 
readiness, user response, and contextual 
conditions. This integration creates a closed-loop 
GAN-driven system that not only detects and 
mitigates threats in real-time but also evolves by 
learning from user and system behavior. The 
result is a robust, adaptive, and user-aware CM-
GAN conceptual model capable of enhancing 
cybersecurity threat detection and awareness in 
complex environments like universities (Figure 
2). 
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Conceptual Model 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Operationalization of the Conceptual 
Model 
 
Operationalizing the conceptual model involves 
translating the identified factors into measurable 
variables to enable practical implementation. 
Each factor such as attack vectors, defense 
mechanisms and user behavior is analyzed to 

derive specific variables that represent its 
attributes. These variables are categorized by 
their measurement types such as binary, ordinal, 
and cardinal scales, ensuring precise 
quantification. This approach facilitates a 
structured evaluation of the model's effectiveness 
in detecting cybersecurity attacks and enhancing 
the awareness of online software and users 
(Tables 2 and 3). 

 
Table 2: Operationalization of the Conceptual Model 

No. Concepts Indicators Variables Type of 
Measurement 

1. Attacks -Deviations Attack attributes 

-Brute force attacks attributes 

-Dos attacks attributes 

-Web attacks attributes 

-Infiltration attacks attributes 

-Botnet attacks attributes 

-DDos attacks attributes 

Binary 

2. Defense -Detection 

Mechanism 

-Anomaly detection rule 

-Anomaly detection score 

Binary 

Attacks 

Defense 

Response 

Cybersecurity threat Detection 
and Awareness 

Dependent Conceptual 

Variables 

 

Intervening Conceptual Variables 

Figure 2: MB-GAN/CM-GAN conceptual model (As   adapted from Smith and Jones, 2020; Doe and Lee, 2021; and Brown and Hall, 

2020) 

Independent Conceptual Variables 

 

User Behavior, Network Load and Software Venerability 
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3. Response Enhancement 
Mechanism 

-Timely alerts 

-Actionable insights 

Sending alert email and attributes 

-Disabling compromised software and attributes 

-Updating Security tool and attributes 

Ordinal 

4. User behavior User activity -Login Frequency 

-Session Duration 

-Access Patterns 

-Unusual Activity 

-Usage Timeframes 

-Data Transfer Volume 

Ordinal 

-IP Address Anomalies 

-Device Signatures 

Cardinal 

-Multi-Factor Authentication Binary 

5. Network Load Network activity -Packet Volume 

-Packet Size Distribution 

-Bandwidth Utilization 

-Latency 

-Concurrent Connections 

-Protocol Usage 

-Traffic Spikes 

-Dropped Packets 

-External Vs Internal Traffic 

-Attack Signatures 

Ordinal 

6. Software 
vulnerabilities 

Software Report -Software Version 

-Open Ports 

-Unpatched Vulnerabilities 

-Encryption Standards 

Cardinal 

-Configuration Issues 

-Malware Presence 

-Zero-Day Exploits 

Binary 

-Access Control Weaknesses 

-Authentication Mechanisms 

-System Logs 

Ordinal 

7. Cyber Threat 
Detection and 
Awareness 

-Detection and 
enhancement 
mechanisms 

Network Traffic Analysis 

Detection Variable 

-Packet size and frequency 

Enhancement Variable 

-Anomaly Detection Algorithms 

Binary 

User Behavior Analytics (UBA) 
Detection Variable 

-Login times and frequency 
Enhancement Variable 

-Behavioral Biometrics 

Binary 

File Integrity Monitoring (FIM) 
Detection Variable 

-Changes in critical system files 
Enhancement Variable 

-Cryptographic Hashing 

Binary 

Endpoint Detection and Response (EDR) 

Detection Variable 

-Malicious software signatures 
Enhancement Variable 

-Heuristic and Behavioral Analysis 

Binary 
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Email Security 
Detection Variable 

-Phishing email indicators 
Enhancement Measure 

-Spam Filters and Phishing Detection 

Binary 

Application Security Monitoring 

Detection Variable 

-Injection attack patterns (e.g., SQL injection, 
XSS) 

Enhancement Variable 

-Web Application Firewalls (WAF) 

Binary 

Access Control and Identity Management 
Detection Variable 

-Unauthorized access attempts 
Enhancement Variable 

-Role-Based Access Control (RBAC) 

Binary 

Threat Intelligence Integration 
Detection Variable 

-Indicators of Compromise (IoCs) 
Enhancement Variable 

-Threat Intelligence Platforms (TIPs) 

Binary 

System Performance Metrics 
Detection Variable 

-Unusual CPU or memory usage 
Enhancement Variable 

-Performance Monitoring Tools 

Binary 

Access Logs Analysis 

Detection Variable 

-Unusual access patterns 

Enhancement Variable 

-Log Analysis Tools 

Binary 

Software Vulnerabilities 

Detection Variable 

-Outdated software versions 

Enhancement Variable 

-Automated Patch Management 

Binary 

Data Exfiltration Detection 
Detection Variable 

-Large data transfers to external IPs 
Enhancement Variable 

-DLP (Data Loss Prevention) Solutions 

Binary 

Configuration Changes 
Detection Variable 

-Unauthorized configuration changes 
Enhancement Variable 

-Configuration Management Tools 

Binary 

Physical Security Events 

Detection Variable 

-Unauthorized physical access attempts 
Enhancement Variable 

-IoT Security Devices 

Binary 
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Table 3. Dataset Summary of Conceptual Model 

 
Conclusion 
In conclusion, the MB-GAN and CM-GAN model 
offers a significant advancement over traditional 
deep learning models by integrating structured 
matrix representations to enhance the detection 
and response to cybersecurity attacks in 
university online software. Unlike conventional 
approaches, this model provides a dynamic and 
adaptive framework that incorporates real-time 
defense-user responses, evolving attack vectors, 
defense mechanisms, ensuring robust attack 
mitigation. The mathematical integration of 
matrices facilitates precise mapping of 
relationships among key cybersecurity factors, 
resulting in improved accuracy and efficiency. 
Moreover, the model's ability to generate 
synthetic attack scenarios enhances its training 
capability, making it resilient to novel attacks. 
Future applications could extend this framework 
to large-scale enterprise systems, IoT networks, 
and critical infrastructure, enabling proactive 
defense strategies. By addressing existing 
limitations in scalability and adaptability, the 
model sets a foundation for advanced, intelligent 
cybersecurity solutions. 
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