
Multidisciplinary Journal of TUM 1 (1) 2020 15-25 DOI: https://doi.org/10.48039/mjtum.v1i1.11 Original Article

15
Published: December 2020

Modeling a Competence-based Industry Role Selection System for
University Graduates Using Machine Learning

Fullgence Mwachoo Mwakondo

Institute of Computing and Informatics, Technical University of Mombasa, P.O. Box 90420 – 80100,
Mombasa, Kenya

Email: mwakondopoly@gmail.com

Abstract
his paper presents a design of a system for industry role selection, representing both its structure and
behavior. Knowing the right industry role that suits a graduate based on their competences on
graduation has remained a critical matter for graduates when searching for jobs after graduation.
Thousands of university students graduate each year and enter the market to search for jobs that are

limited. Searching without prior information on the most appropriate industry role one is suitable for leads to
blind search. Blind search not only puts graduates at risk of long-term unemployment and job mismatch but
also overloads employers with many applications during job selection. Therefore, this paper addresses 2
objectives: 1) to model the system’s structure, and 2) to design the algorithm for the system’s behavior. Since
object-oriented programming is currently the dominant programming paradigm, object modeling technique
was selected to model both the system’s structure and the algorithm for the system’s behavior. To realize object
modeling and represent the system’s artifacts in a highly simplified form, Unified Modeling Language (UML)
was adopted as the standard modeling toolkit. More specifically, UML class diagram was used to represent the
structural model of the system where the underlying objects of the model were exactly similar to those of the
problem domain. Finally, use case diagram of the UML toolkit was used to represent the system’s behavior in
selecting industry role for graduates. To ensure that the system improves performance of its behavior through
experience in selecting industry roles for graduates, Machine Learning (ML) algorithm was designed. Two
machine learning techniques, naïve Bayes and Support Vector Machines (SVM), were used as the algorithm’s
criteria for selecting industry roles for graduates. Experiments to evaluate performance of the system were
conducted using data collected from Software Engineering industry domain. The end product was design of
an intelligent industry role selection system with relevant structure and behavior to easily work with both in
the academia and industry. Findings reveal the system improves performance of its behavior in selecting
industry roles for graduates much better under SVM (67%) than naïve Bayes (57%). On the same benchmark
dataset, the system recorded better performance (85%) than reported performance (82%) in the benchmark
system. These findings will benefit industry by getting evaluation tool for revealing graduate’s suitability for
employment which they can use as prior information for decision making when filtering candidates for
interview. Besides, this will provide researchers with a digital platform to study and bridge the gap between
industry and academia. Lastly, this will attempt to reduce both low job satisfaction and long-term
unemployment that is one of the causes of social and economic pain both in Kenya and around the world. This
paper has revealed competence based industry role selection system with relevant structure and behavior can
improve searching of jobs by providing a fairly accurate prior information. However, this paper recommends
testing this approach with other alternative machine learning techniques as well as other alternative industry
domains.

 Key Words: Industry-academia gap, Machine learning, Object-oriented modeling, Selecting industry roles

Introduction
Thousands of university students graduating each
year enter the market to search for jobs that are
limited. This is due to inadequate capacity of most
economies to create jobs both in developed and
developing countries in the world. As a result, for

new university graduates getting a job is
characterized by long search for employment
opportunities in the market. In order to maximize
their employment chances, graduates send as many
applications as possible to as many organizations
they think are potential employers. However, this

T

mailto:mwakondopoly@gmail.com

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

16

method of searching without prior information on
the most appropriate industry role one is suitable
for leads to blind search. Blind search not only puts
graduates at risk of long term unemployment and
job mismatch but also overloads employers with
many applications during job selection. Therefore,
knowing the right industry role that suits a
graduate based on their competences on
graduation remains a critical matter for graduates
when searching for jobs after graduation.

As a result, matching competences a graduate
possesses with competences required by a given
industry role through skills mapping is the new
technique that links graduates skills with industry
roles. Skills mapping ensures the right match of
graduates’ skills to industry jobs through
application of analytical methods. Analytical
methods do better where independent and
dependent features of a problem are simple and
linearly related to each other. However, where
complexity and non-linearity characterize the
problem as it were in skills mapping, analytical
methods get overwhelmed. Although industry
roles are defined by unique patterns of skills in
terms of main competence, specific competence,
and proficiency (CWA16458) their complexity is
evidenced by the way they are organized
hierarchically into specialized groups defined by
organizational structures. Four organizational
structures used to organize industry roles are
functional, geographical, product, and matrix. As a
result, recognizing skills patterns for various
industry roles organized in these hierarchical
structures is difficult for analytical methods and
makes them inefficient.

However, technology such as Artificial Intelligence
(AI) can be used to support analytical methods and
help improve their efficiency. AI provides a
technology for designing programs that can learn
such complex patterns from grouped data and be
able to automatically recognize these patterns in
newly collected data. This involves representing
the underlying structure of the groups in the
program as the data structure and empowering the
program to learn the pattern rules for each group
that can be applied to classify a new data item into
any one of the existing groups. This approach is
known as supervised learning and requires
availability of large volumes of data.
Coincidentally, due to the availability of large

volumes of data, data driven AI technology known
as Machine Learning (ML) is gaining traction. ML
is used to design such programs that can learn and
improve their performance when carrying out a
task through experience derived from learning.

Therefore, in this paper, the design of an intelligent
system for industry role selection using machine
learning as the data-driven, AI technology,
representing both its structure and behavior are
discussed. Object modeling technique was selected
to model both the system’s structure and the
algorithm for the system’s behavior. To ensure that
the system improves performance of its behavior
through experience in selecting industry roles for
graduates, ML was used to design the algorithm.
The system is expected to solve the problem of
blind search which involves searching for job
without prior information on the most appropriate
industry role one is suitable for. Blind search not
only puts graduates at risk of long term
unemployment and job mismatch but also
overloads employers with many applications
during job selection. As a result, the specific
objectives of this paper were: 1) to model the
system’s structure, and 2) to design the algorithm
for the system’s behavior.

Situation Analysis
There exists little information towards improving
graduates employability especially using machine
learning techniques (Jantawan & Tsai, 2011; Chien
& Chen, 2008). Zaharim et al., (2010) applied
requirements of professional bodies and
accrediting bodies to construct an engineering
employability skills framework for Malaysian
graduates. Chien & Chen, (2008) built a
classification system using data mining techniques
for prediction of employee retention of new job
applicants. Jantawan & Tsai (2011) presented a
classification system based on decision trees and
naiveBayes for predicting graduate employment 12
months after graduation based on attributes that
influence graduate employment identified from
actual data collected from graduates. None of the
studies attempts to empower new graduates with
information for quick job search or attempts to
improve the search technique.

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

17

Case study: Software Engineering Industry
Software Engineering (SE) is a typical case of
occupational industry domain. This domain has
been widely studied in research literature (Moreno
et al., 2012; Shashidhar et al., 2015). SE as an
industry occupation is concerned with
development of software that is reliable, efficient
and economical. Software developers or engineers
refer to the entire community of people involved in
software development or working in the SE
industry in various roles. Role activities of software

development demand specialized cognitive
competences as prerequisites for superior
performance (Winterton et al., 2005). Industry roles
have specific areas of competence as aspects of the
job which an individual can perform competently.
Each industry role demands certain levels of skills
capacity in terms of main competence area, specific
competence area, and proficiency. Currently,
industry roles in SE demand 3 types of main
competence (designing, coding, managing) and 6
specific competences include, analyst programmer
(AP – application programmers, MP – mobile
programming), test programmers (TE – test
engineers), software architecture designer (SA –
software architect), web designers (WP – web
programmers), systems managers (SAD - systems
administrator) and project managers (PM – project
management), and broadly focused to either
mobile applications or desktop applications. Table
1 presents areas of competence for software

developers and their relative demand or
prevalence in each industry role as well as
percentage proportions in each industry role of
software developers’ focus towards mobile
applications or desktop applications. Competences
that drive superior job performance are derived
from knowledge and skills.

Technical skills required of software developers
were revealed by a study carried out by Surakka
(2005) which grouped these skills into 5 categories:
platform skills, programming skills, networking
skills, database skills and distributed technology
skills. To learn the skills for software development,
graduates must be trained in the academia.
However, they are trained along with other ICT
practitioners through a number of degree programs
that are offered in the academia such as Computer
Science, Information Technology, Software
Engineering, Mathematics and Computer Science.
This makes it difficult to recognize skills patterns
that are unique for various SE industry roles. The
universally recommended source of knowledge
and skills for software engineers is known as
Software Engineering Body of Knowledge
(SWEBOK). This content provides a standard to
academia for creating academic programs. As a
result, the academic programs in which graduates

Table 1. Areas of Competences for Software Engineering (SA, software architect; AP, application programming; TE, test
engineering; WP, web programming; MP, mobile programming; SAD, systems administration; and PM, project
management) (Mwakondo, 2018)

TYPE
SE Industry Roles

TOTAL
[Rank]

SA AP TE WP MP SAD PM

M
a

in

C
o

m
p

et
en

ce

[%

p
re

v
a

le
n

ce
] D (design) 50.00 22.12 42.16 40.51 34.58 17.61 28.21 36.00 [2]

P (coding) 33.20 61.06 52.61 40.51 42.36 29.55 34.29 42.72 [1]

M (manage) 16.80 16.81 5.22 18.99 23.05 52.84 37.50 21.28 [3]

S
p

ec
if

ic

co
m

p
et

en
ce

[%

n
u

m
b

er
s]

 Mobile
Developers 26.30 48.30 57.10 48.40 0 7.70 14.30 38.90

Desktop
Developers 73.70 51.70 42.90 51.60 0 92.30 85.70 61.10

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

18

are trained are created in collaboration of both
employers and academia in the industry. Fig. 1
indicates the interaction between employers,
institutions, and graduates as stakeholders in the
domain industry.

Figure 1. Graphic presentation of industry-academia
interactions

Each year institutions advertise programs that are
viewed and attract potential graduates. Before they
are enrolled for training, graduates are evaluated to
check their readiness to undertake the program.
Each institution in the academia has its own
eligibility criteria to admit the students for the
program. This makes graduates’ skills from one
institution biased towards some of industry roles
possibly different from another institution.
Therefore, employers must interact with the
programs in academia through which they can
select ones that whose graduates’ skills are closely
biased towards their needs and can be potential
employees. Successfully trained graduates are
evaluated by not only learning institutions to
determine their level of success but also employers
in the industry to determine their suitability for
industry roles before they are employed.

Structural Modeling of the Industry Role
Selection System
Unified Modeling Language (UML) is the standard
modeling toolkit used in object-oriented modeling.
Object modeling technique was preferred over
structured modeling to model the system’s
structure because currently the dominant
programming paradigm is object-oriented

programming (Tharawani et al., 2016). Object-
oriented programming languages, such as Java,
.Net, PHP, Python, etc., are widely used to
implement the object–oriented design models.
More specifically, class diagram of the UML toolkit
was used to produce the object model to represent
the system’s structure in selecting industry roles for
graduates. An object model describes the system’s
objects and their underlying interactions. Therefore
class diagram as a representation of object model
provides specification for software classes and their
interfaces in the application. Fig. 2 presents the
object model in the form of a class diagram. The
diagram indicates that graduates are trained by
institutions whose training targets specific industry
sectors. Each sector contains specific roles that are
offered by employers. Therefore graduates
targeting a particular sector are employed by
employers belonging to that sector.

Figure 2. Graphic presentation of a class model

In addition, there is a lot of data available in each
sector showing employees’ profiles which can be
mined to extract rules for prediction models that
can be used to evaluate and predict most suitable
roles for new graduates by potential employers or
the new graduates themselves. Class Role models
various jobs offered by the industry employers.
Each role has a specific set of competences which
are conceptualized into values stored as an array
field of the class known as roleIND. Since each role

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

19

belongs to a particular named sector characterized
by a particular set of subjects, the class industry
sector represents these details for each role. Each
role has a particular threshold for sector subjects
whose training is conducted at learning
institutions. The class institution models various
sectors in which graduates are trained through
various subjects where they develop required
competences for roles in the training sector.
Cohorts in the training develop both common
competences that apply to all and specific
competences that are individual based. Common
competences are conceptualized into values stored
as an array field of the institution class known as
secIND while the specific competences are
calculated on demand from a graduate through the
class graduate where academic results and scores
in the sector subjects are derived. The class
Administrator models an artificial entity that
produces the prediction model through the fitModel
method that uses the dataset for the sector in the
Dataset class. The fitModel generates the machine
learning model from the dataset that is used by
both Graduate and Employer classes to predict
suitable industry role through the predict method.
The predict method is called repeatedly by
evaluateSkills methods of Graduate and Employer
class.

Behavioral Modeling of Industry Role
Selection System
Again, Unified Modeling Language (UML) was
adopted as the standard modeling toolkit. More
specifically, use case diagram of the UML toolkit
was applied to produce the use case model to
represent the system’s behavior in selecting
industry role for graduates. A use case model
describes the functions of the system as viewed by
its users, developers, and testers, and is developed
as the initial specification of the system’s
requirements. Fig. 3 presents the behavioral model
in the form of a use case diagram. The use case
model envisaged 4 kind of users for the system i.e.
administrator, employer, graduate, and university
institution. Employers should be able to register
industry roles available in various sectors in which
they operate, clearly indicating their minimum
skills and knowledge index values requirements.
Also, they should be able to view academic sector
profiles for various institutions based on their
knowledge and skills content in the exams each
year they examine. Finally, employers should be

able to evaluate new graduates on industry roles
suitability. Likewise, institutions should be able to
register their academic profiles for sectors in which
their degree programs are based. Where for each
sector, each year they should record knowledge
and skills indices derived from their exam’s content
administered to students. Also, they should be able
to view industry roles profiles for various sectors
based on knowledge and skills minimum indices
required by industry. Finally, institutions should be
able to evaluate their graduates on industry roles
suitability before they graduate so as to assess
themselves against industry requirements.
Graduates, as well should be able to evaluate
themselves against industry roles requirements to
determine their suitability for employment. They
should, also, be able to view industry role
requirements for various sectors in industry as well
as view academic performance profiles in various
sectors for various institutions.

Figure 3. Graphic presentation of use-case model

Algorithm Design and Implementation of
the Industry Role Selection System
In this section, the algorithm that generates the
machine learning objects from the dataset of
employees’ profiles in the industry roles as well as
algorithm that uses these machine learning objects
to predict industry roles for new graduates is
described. Also, the results achieved through the

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

20

proposed choice selection system are presented
and discussed.

Fit Algorithm explanation
This method is responsible for fitting the data into
the system to learn or to estimate the parameters.
Algorithm 1 outlines algorithm of the ‘fit’ method.
This algorithm takes in the taxonomic tree in which
the industry roles are organized and the dataset
containing graduate employees details to be
learned. The algorithm is able to group the dataset
content based on their dependent values according
to the various sections of the taxonomic tree such as
sub-tree (main competence), non-leaf nodes
(proficiency), leaf nodes (specific competence), or
tree heights. The algorithm is able to learn how
items of the dataset belonging to various leaf nodes
look like, if they belong to known non-leaf nodes
and various non-leaf nodes are distinguished by
their height levels in the tree or sub-trees. Finally,
the algorithm is able to store the learned knowledge
rules for that particular dataset. Therefore, the key
aspects of this algorithm are: 1) input, 2) learning,
and 3) storing the learned knowledge rules. Input
to the function is the dataset, d, and taxonomy tree,
t, which is a hierarchical data structure describing
industry roles structure. MLA stands for Machine
Learning Algorithm, in this case either naïve Bayes
or support vector machines.

Algorithm1: fit model algorithm
Function Fit(taxonomy_tree t, dataset d)

 PredictorModel = {}
 levelPredictionObject = {}
 NodePredictionObject = {}
 subTreePredictionObject = {}
1_Get taxonomy_tree’s height/levels
 Height =t.getTreeDepth()
 1_Get subtrees/main_competences
 Subtrees = {}
 Subtrees = t.getSubtrees()
 1_For each subtree/main_competences
 For Each subtree, m in subtrees
 1.1_Get subtree’s leaf nodes/classes
 Childnodes = m.getChildrenOf(d)
 1.2_Get other subtrees’ leaf nodes/classes
 Othernodes = t.getChildrenOf(d) -

Childnodes
 1,3_Create subtree’s (main_competences)

classifier object
 Testset1, trainset1 = splitDataset(d,

childnodes)

 Testset2, trainset2 = splitDataset(d,
othernodes)

 Testset = testset1 + testset2
 Trainset = trainset1 + trainset2
 PredictionModel =

m.getPrediction(MLA, trainset)
 ModelAccuracy =

m.getAccuracy(predictionModel,
testset)

 subTreePredictionObject[m] =
{[childnodes],
[predictionModel],[ModelAccuracy]}
3_For each subtree’s non-leaf

nodes/proficiencies
For Each subtree levels, h in Height
 3.1_Get leaf children
 Leafnodes =

m.getLevelNodes(h, d)
 3.2_Get other non-leaf nodes’ leaf

children
 otherLeafnodes =

m.getChildrenOf(d) -
leafnodes

 3,3_Create non-leaf node’s
(proficiency) classifier object

 Testset1, trainset1 =
splitDataset(d, leafnodes)

 Testset2, trainset2 =
splitDataset(d,
otherLeafnodes)

 Testset = testset1 + testset2
 Trainset = trainset1 + trainset2

 PredictionModel =
m.getPrediction(MLA, trainset)

 ModelAccuracy =
m.getAccuracy(predictionModel,
testset)

 levelPredictionObject[h] =
{[leafnodes],
[predictionModel],[ModelAccuracy]}

 4_For each subtree’s leaf nodes/
specific_comptences

 For Each subtree leafnode, n in
leafnodes

 4.1_Get leaf node/class
 Currentnode = n
 4.2_Get siblings
 Othernodes = leafnodes

- n
 4.3_Create leaf node’s

(Specific_comptence) classifier
object

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

21

 Testset1, trainset1 =
splitDataset(d, currentnode)

 Testset2, trainset2 =
splitDataset(d,
otherLeafnodes)

 Testset = testset1 +
testset2

 Trainset = trainset1 +
trainset2

 PredictionModel =
m.getPrediction(MLA, trainset)

 ModelAccuracy =
m.getAccuracy(predictionModel,
testset)

NodePredictionObject[n] =
{[currentnode],
[predictionModel],[ModelAccuracy]}

 End For
 3_Store specific classifier objects in
the data structure

 PredictorModel[1] ={
NodePredictorObject}

 End For
 2_Store proficiency classifier objects in the
data structure
 PredictorModel[2] ={
levelPredictorObject}
 End for
 1_Store main competence classifier objects in the
data structure
 PredictorModel[3]
={subtreePredictorObject}
PredictorModel{ 1: {NodePredictorObject}, 2:
{levelPredictorObject}, 3: {subtreePredictorObject}}
return PredictorModel
End function

Predict Algorithm explanation
This method is responsible for the prediction
function of the system. Algorithm1 outlines the
algorithm of the ‘predict’ method. The algorithm
takes in an instance of unemployed graduate’s data
and taxonomic tree for industry roles in which the
graduate is seeking for employment. The algorithm
uses the knowledge rules generated by the ‘fit’
algorithm to decide the role for which the graduate
is suitable. The key aspects for this algorithm are: 1)
input tree and graduate data, 2) load the
knowledge rules from the store, 3) search for the
appropriate knowledge rules to process the
graduate data and, 4) use the rules to decide the
industry role suitable for the graduate.

Algorithm2: predict role algorithm
Function Predict(taxonomy_tree t, data d)

mainCompetencePredictorObjects = {}
proficiencyCompetencePredictorObjects =

{}
specificCompetencePredictorObjects = {}
1_Load classifier objects
File = open(“path to PredictorModel”)
Model = Load(File)
1_Get taxonomy_tree’s height
Height = t.getTreeDepth()
1_Get taxonomy_tree’s

subtrees/main_competences
Subtrees = {}
Subtrees = t.getSubtrees()
1_For each subtree/main_competence
For Each subtree, m in subtrees
 2.1_Get main_competence classifier

objects
 mainCompetencePredictorObjects =

Model[3]
 currentAccuracy = 0
 correctlabels = {}
 2.2_Predict data’s main_competence
 For Each

mainCompetencePredictorObject,
MO in
mainCompetencePredictorObjects

 Labels = MO[0]
 Predictor = MO[1]
 Accuracy = MO[2]
 Result = Predictor(d)
 3.1_Select main_competence

of classifier object that predicts +ve
 If Result ==1
 If

(currentAccuracy<=Accuracy)

 currentAccurracy = Accuracy

 correctLabels = Labels

 correctSubtree = m
 else

 skip/continue
 else
 skip/continue
 End For
End For

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

22

1_For each subtree’s non-leaf nodes/proficiencies
ordered in ascending order of levels

For Each correctSubtree levels, h in Height
 2.1_Get corresponding proficiency

classifier objects
proficiencyCompetencePredictorObj
ects = Model[2]

 currentAccuracy = 0
 correctlabels = {}
 2.1_Predict data’s proficiency competence
 For Each

proficiencyCompetencePredictorObj
ect, PO in
proficiencyCompetencePredictorObj
ects

 Labels = PO[0]
 Predictor = PO[1]
 Accuracy = PO[2]
 Result = Predictor(d)
 3.1_Select proficiency of

classifier object that predicts +ve
 If Result ==1
 If

(currentAccuracy<=Accuracy)

 currentAccurracy = Accuracy

 correctLabels = Labels

 correctLevelNodes = h
 else

 skip/continue
 else
 skip/continue
 End For
End For
1_Get current leaf node’s specific_competence

classifier objects
For Each correctLevelNode, n in

correctLevelNodes
 2.1_ Get specific_competence classifier

object
specificCompetencePredictorObjects
= Model[1]

 currentAccuracy = 0
 correctlabel = {}
 2.1_Predict data’s specific_competence
 For Each

specificCompetencePredictorObject,
SO in
specificCompetencePredictorObjects

 Label = SO[0]

 Predictor = SO[1]
 Accuracy = SO[2]
 Result = Predictor(d)
 3.1_Select

specific_competence of classifier object
that predicts +ve

 If Result ==1
 If

(currentAccuracy<=Accuracy)

 currentAccurracy = Accuracy

 correctLabel = Label
 else

 skip/continue
 else
 skip/continue
 End For
End For
1_Report industry role = main_competences +

proficiency + specific_competence
Role=maincompetence(correctSubtree)+pr

oficiency(correctLevelNodes)+specif
ic_competence(correctLabel)

return Role
End Function

Results and Discussion
Table 2 presents the demographic characteristic of
the experimental datasets used in the investigation.
Dataset2 was used as benchmark dataset where
Shashidhar et al., (2015) on the same dataset, using
a related system, reported performance accuracy of
82%. Dataset1&3 were used as multiple case
studies for different industry domains to validate
system’s results for generalizability. The system’s
model was generated using two induction
algorithms, hence two versions of the model. The
two models were experimented under similar
conditions then the results were compared. This
involved fitting and testing both models with
similar training and validate sets, respectively
through 10 iterations of 5-fold cross-validation.

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

23

Table 2. Demographic characteristics of
experimental datasets

Dataset Attributes Instances Classes Levels

Dataset1
(SE field)

18 113 12 3

Dataset2
(SE
benchmark)

18 279 12 3

Dataset3
(AL field)

14 50 7 3

Table 3 presents results of this experiment that
indicated there was a difference in mean
performance between SVM and naïve Bayes
models based system (56.79, 52.54 in dataset1 and
78.77, 63.93 in dataset2, respectively) which
suggested that SVM model was better than naïve
Bayes. Further investigation was conducted to test
whether the differences (4.25 and 14.84) were real
and significant.

This test was conducted using paired sample t-test
procedure. A paired sample t-test was conducted to
test the hypothesis that system performance
difference was not significant. For this type of test
to be valid, conditions for tests were checked
(homogeneity and normality of data). The results
indicate the difference was real and significant
based on 10 iterations of 5-fold cross validation
tests (paired dataset1: t = -2.09; df = 49; p = 0.042
and paired dataset2: t = -15.02; df = 49; p = 0.000,
respectively).

Table 3. Model’s mean (± STDev) performance
validation

5-Fold cross validation results (%)

Test
fold

SE Benchmark Dataset SE Field Dataset

Naïve
Bayes SVM

Naïve
Bayes SVM

Fold_1 60.8±3.4
(n=10)

73.3±3.7
 (n = 10)

49.5±7.5
(n=10)

55.9±9.6
(n=10)

Fold_2

63.0±3.7
(n=10)

77.8±4.2
(n=10)

48.9±11.3
(n=10)

59.4±5.0
(n=10)

Fold_3

66.7±5.9
(n=10)

80.2±6.0
(n=10)

56.2±7.2
(n=10)

58.1±10.7
(n=10)

Fold_4

63.4±5.5
(n=10)

81.9±2.6
(n=10)

51.2±10.5
(n=10)

53.1±8.5
(n=10)

Fold_5

65.8±6.2
(n=10)

80.7±5.8
(n=10)

56.8±14.0
(n=10)

57.5±12.7
(n=10)

Overall

63.93±5.3
0 (N=50)

78.77±5.4
2 (N=50)

52.54±10.
56 (N=50)

56.79±9.48
(N=50)

To confirm the difference was not due to any other
factor but only machine learning construct
difference, ANOVA test was conducted to rule out
the effect of fold to fold variations. One-way
ANOVA is a statistical procedure used to test
whether the means of 2 or more groups, in this case
folds, were significantly different. For this type of
test to be valid, conditions for ANOVA that must
be satisfied are homogeneity of group variance and
normality of data was done using the Levene’s test
where the condition for homogeineity of group
variances and the condition for difference of group
means were both met (p = 0.495 and p = 0.135,
respectively). The results indicate the fold
variances were equal and, in fact, means of the fold
scores were not different and therefore the
seemingly difference between the two models in
Table 3 above was not due to effect of fold to fold
variations. This was enough reason to select SVM
model as the best classifier for the system.

Finally, test of the quality of the system using
appropriate quality measures was required. This
was after realization that accuracy alone sometimes
could be misleading as sometimes a model with
relatively high accuracy was likely to predict the
‘not so important class labels’ fairly accurately
while making all sorts of mistakes on classes that
were actually critical. As a result, other
performance measures such as precision, recall and
F1 scores were incorporated. The aim was to study
the ability of the model to find all the positive
instances correctly (recall) and ability not to label
negative instances as positive (precision) or
weighted average score of the two (F1). Table 4
illustrates results of the model performance along 4
quality metrics and across 3 datasets, and presents
performance results along hierarchical levels across
the 3 datasets. In each case, the model reported
equal performance in both accuracy and recall.
However, its ability not to label negative classes as
positive was not as good as its ability to find all
positive classes correctly which was equally good
(precision = 66%, recall = 69%).

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

24

Table 4. Comparison of performance across three
datasets

Performance
Metric

SE field
Dataset
(Research)

SE lit. Dataset
(Benchmark)

AL field
Dataset
(Validation)

Mean

Accuracy 0.59 0.85 0.65 0.69

Precision 0.62 0.83 0.54 0.66

Recall 0.59 0.85 0.65 0.69

F1_score 0.57 0.83 0.56 0.65

On average, model performance seemed to
improve upward the hierarchy levels consistent
with other models (Clare & King, 2003; Barbedo &
Lopes, 2006). Model’s performance seemed to be
very high in the benchmark dataset as a result of
having more instances whose classes had very high
accuracies (class 10 & 11) and fewer instances
whose classes had very low accuracies (class 7 & 8).
This was not the case with other two datasets where
distribution differences of classes with very high
and very low accuracies were not high. In the
Benchmark dataset where performance was 85%,
high accuracy (100%) class (class11) had the highest
number of instances (size=11) while low accuracy
(5%) class (class7) had the lowest number of
instances (size=2). In Research dataset where
performance was 59%, high accuracy (93.4%) class
(class7) had moderate number of instances (size=3)
while low accuracy (5%) class (class3) had
moderate number of instances (size=1). In
Validation dataset where performance was 65%,
high accuracy (100%) class (class1&5) had
moderate number of instances (size=2) while low
accuracy (5%) class (class2&7) had moderate
number of instances (size=2). Model performance
in both Research and Validation datasets seemed to
be fairly good (59% and 65%, respectively). These
results indicate the best generalization
performance as an average performance calculated
across the 3 datasets. In this case, along hierarchical
levels the best average performance accuracy of the
model was 67% while general average performance
was 69%. Therefore, it can confidently be claimed
that the best performance of the model was 67%.

Conclusion
This paper has revealed that searching for a job
without prior information on the most appropriate
job one is suitable for leads to blind search. Blind
search can put graduates at risk of long term
unemployment, job mismatch and as well as
overloading employers with many applications
during job selection. As a result, this paper has

presented a design of a system for industry role
selection, representing both its structure and
behavior and more specifically modeling the
system’s structure using class diagram as well as
modeling system’s behavior using use case
diagram. Two important aspects of the system’s
behavior when selecting appropriate industry role
with the help of machine learning techniques were
presented as design algorithms. Experimental
design was adopted to test the systems relevancy
where the findings were promising. Hence, the
paper’s findings is a greater step forward towards
reducing both low job satisfaction and long term
unemployment that is one of the causes of social
and economic pain both in Kenya and around the
world.

Acknowledgement

My great appreciations go to the entire staff of the
Department of Partnership, Research and
Innovation (PRI) at Technical University of
Mombasa (TUM) for proof reading, editing, and
final publication of this study. Besides, National
Council for Science, Technology and Innovation
(NACOSTI) was very instrumental in supporting
the research funding of this study as part of my
PhD research.

References
Chien C., Chen L. (2008). Data mining to improve

personnel selection and enhance human
capital: A case study in high-technology
industry. Expert Systems with Applications 34:
280–290

Jantawan, B. & Tsai, C. (2013). Application of Data
Mining to Build Classification Model for
Predicting Graduate Employment”.
International Journal of Computer Science and
Information Security Vol.11 (10): 1–7

Moreno, A., Sanchez-Segurab, M., Medina-
Dominguezb, F. & Carvajal, L. (2012).
Balancing software engineering education
and industrial needs. Journal of Systems and
Software 85(7):1607–1620

Mwakondo, F. (2018). A Model for Mapping
Graduates’ Skills to Industry Roles using
Machine Learning Techniques: A Case of
Software Engineering. PhD Thesis.
http://erepository.uonbi.ac.ke/

Multidisciplinary Journal of TUM 1 (1) 2020 15-25 Original Article

25

Shashidhar, V., Srikant, S., Aggarwal, V. (2015).
Learning Models for Personalized
Educational Feedback and Job Selection.
Proceedings of the 32nd International Conference
on Machine Learning, Lille, France, 2015. JMLR:
W&CP volume 37. Copyright 2015

Surakka, S. (2005). Trend Analysis of Job
Advertisements: What Technical Skills Do
Software Developers Need? Informatics in
Education, 2005. Vol. 4(1): 101-122

Tharawani, R.K, Nzamani, H.N, Nzamani, Q.A.,
Khatari, Y., Chandio, F.H, & Abbasi, M.S.
(2016). Modelling Choice Selection System of
a Public Sector General University in
Pakistan, Sindh University Research Journal
(Science Series) 48: 127-134

Winterton, J., Delamere, F. & Stringfellow, E.
(2005). Typology of Knowledge, Skills and
Competences: Clarification of the concept
and prototype. Centre for European Research on
Employment and Human Resources 2005:1-108

Zaharim, A., Omar, M.Z., Yusoff, Y.M., Muhamad,
N., Mohamed, A., and Mustapha, R. (2010).
Practical framework of employability skills
for engineering graduate in Malaysia,” In:
IEEE EDUCON Education Engineering 2010:
The Future of Global Learning Engineering
Education: 921–927 pp

