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Abstract  
his paper presents a design of a system for industry role selection, representing both its structure and 
behavior. Knowing the right industry role that suits a graduate based on their competences on 
graduation has remained a critical matter for graduates when searching for jobs after graduation. 
Thousands of university students graduate each year and enter the market to search for jobs that are 

limited. Searching without prior information on the most appropriate industry role one is suitable for leads to 
blind search. Blind search not only puts graduates at risk of long-term unemployment and job mismatch but 
also overloads employers with many applications during job selection. Therefore, this paper addresses 2 
objectives: 1) to model the system’s structure, and 2) to design the algorithm for the system’s behavior. Since 
object-oriented programming is currently the dominant programming paradigm, object modeling technique 
was selected to model both the system’s structure and the algorithm for the system’s behavior. To realize object 
modeling and represent the system’s artifacts in a highly simplified form, Unified Modeling Language (UML) 
was adopted as the standard modeling toolkit. More specifically, UML class diagram was used to represent the 
structural model of the system where the underlying objects of the model were exactly similar to those of the 
problem domain. Finally, use case diagram of the UML toolkit was used to represent the system’s behavior in 
selecting industry role for graduates. To ensure that the system improves performance of its behavior through 
experience in selecting industry roles for graduates, Machine Learning (ML) algorithm was designed. Two 
machine learning techniques, naïve Bayes and Support Vector Machines (SVM), were used as the algorithm’s 
criteria for selecting industry roles for graduates. Experiments to evaluate performance of the system were 
conducted using data collected from Software Engineering industry domain. The end product was design of 
an intelligent industry role selection system with relevant structure and behavior to easily work with both in 
the academia and industry. Findings reveal the system improves performance of its behavior in selecting 
industry roles for graduates much better under SVM (67%) than naïve Bayes (57%). On the same benchmark 
dataset, the system recorded better performance (85%) than reported performance (82%) in the benchmark 
system. These findings will benefit industry by getting evaluation tool for revealing graduate’s suitability for 
employment which they can use as prior information for decision making when filtering candidates for 
interview. Besides, this will provide researchers with a digital platform to study and bridge the gap between 
industry and academia. Lastly, this will attempt to reduce both low job satisfaction and long-term 
unemployment that is one of the causes of social and economic pain both in Kenya and around the world. This 
paper has revealed competence based industry role selection system with relevant structure and behavior can 
improve searching of jobs by providing a fairly accurate prior information. However, this paper recommends 
testing this approach with other alternative machine learning techniques as well as other alternative industry 
domains. 
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Introduction 
Thousands of university students graduating each 
year enter the market to search for jobs that are 
limited. This is due to inadequate capacity of most 
economies to create jobs both in developed and 
developing countries in the world. As a result, for 

new university graduates getting a job is 
characterized by long search for employment 
opportunities in the market. In order to maximize 
their employment chances, graduates send as many 
applications as possible to as many organizations 
they think are potential employers. However, this 
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method of searching without prior information on 
the most appropriate industry role one is suitable 
for leads to blind search. Blind search not only puts 
graduates at risk of long term unemployment and 
job mismatch but also overloads employers with 
many applications during job selection. Therefore, 
knowing the right industry role that suits a 
graduate based on their competences on 
graduation remains a critical matter for graduates 
when searching for jobs after graduation.  
 
As a result, matching competences a graduate 
possesses with competences required by a given 
industry role through skills mapping is the new 
technique that links graduates skills with industry 
roles. Skills mapping ensures the right match of 
graduates’ skills to industry jobs through 
application of analytical methods. Analytical 
methods do better where independent and 
dependent features of a problem are simple and 
linearly related to each other. However, where 
complexity and non-linearity characterize the 
problem as it were in skills mapping, analytical 
methods get overwhelmed. Although industry 
roles are defined by unique patterns of skills in 
terms of main competence, specific competence, 
and proficiency (CWA16458) their complexity is 
evidenced by the way they are organized 
hierarchically into specialized groups defined by 
organizational structures. Four organizational 
structures used to organize industry roles are 
functional, geographical, product, and matrix. As a 
result, recognizing skills patterns for various 
industry roles organized in these hierarchical 
structures is difficult for analytical methods and 
makes them inefficient.  
 
However, technology such as Artificial Intelligence 
(AI) can be used to support analytical methods and 
help improve their efficiency. AI provides a 
technology for designing programs that can learn 
such complex patterns from grouped data and be 
able to automatically recognize these patterns in 
newly collected data. This involves representing 
the underlying structure of the groups in the 
program as the data structure and empowering the 
program to learn the pattern rules for each group 
that can be applied to classify a new data item into 
any one of the existing groups. This approach is 
known as supervised learning and requires 
availability of large volumes of data.  
Coincidentally, due to the availability of large 

volumes of data, data driven AI technology known 
as Machine Learning (ML) is gaining traction. ML 
is used to design such programs that can learn and 
improve their performance when carrying out a 
task through experience derived from learning. 
 
Therefore, in this paper, the design of an intelligent 
system for industry role selection using machine 
learning as the data-driven, AI technology, 
representing both its structure and behavior are 
discussed. Object modeling technique was selected 
to model both the system’s structure and the 
algorithm for the system’s behavior. To ensure that 
the system improves performance of its behavior 
through experience in selecting industry roles for 
graduates, ML was used to design the algorithm. 
The system is expected to solve the problem of 
blind search which involves searching for job 
without prior information on the most appropriate 
industry role one is suitable for. Blind search not 
only puts graduates at risk of long term 
unemployment and job mismatch but also 
overloads employers with many applications 
during job selection. As a result, the specific 
objectives of this paper were: 1) to model the 
system’s structure, and 2) to design the algorithm 
for the system’s behavior.   

Situation Analysis 
There exists little information towards improving 
graduates employability especially using machine 
learning techniques (Jantawan & Tsai, 2011; Chien 
& Chen, 2008). Zaharim et al., (2010) applied 
requirements of professional bodies and 
accrediting bodies to construct an engineering 
employability skills framework for Malaysian 
graduates. Chien & Chen, (2008) built a 
classification system using data mining techniques 
for prediction of employee retention of new job 
applicants. Jantawan & Tsai (2011) presented a 
classification system based on decision trees and 
naiveBayes for predicting graduate employment 12 
months after graduation based on attributes that 
influence graduate employment identified from 
actual data collected from graduates. None of the 
studies attempts to empower new graduates with 
information for quick job search or attempts to 
improve the search technique. 
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Case study: Software Engineering Industry 
Software Engineering (SE) is a typical case of 
occupational industry domain. This domain has 
been widely studied in research literature (Moreno 
et al., 2012; Shashidhar et al., 2015). SE as an 
industry occupation is concerned with 
development of software that is reliable, efficient 
and economical. Software developers or engineers 
refer to the entire community of people involved in 
software development or working in the SE 
industry in various roles. Role activities of software  

 
development demand specialized cognitive 
competences as prerequisites for superior 
performance (Winterton et al., 2005). Industry roles 
have specific areas of competence as aspects of the 
job which an individual can perform competently. 
Each industry role demands certain levels of skills 
capacity in terms of main competence area, specific 
competence area, and proficiency. Currently, 
industry roles in SE demand 3 types of main 
competence (designing, coding, managing) and 6 
specific competences include, analyst programmer 
(AP – application programmers, MP – mobile 
programming), test programmers (TE – test 
engineers), software architecture designer (SA – 
software architect), web designers (WP – web 
programmers), systems managers (SAD - systems 
administrator) and project managers (PM – project 
management), and broadly focused to either 
mobile applications or desktop applications. Table 
1 presents areas of competence for software 

developers and their relative demand or 
prevalence in each industry role as well as 
percentage proportions in each industry role of 
software developers’ focus towards mobile 
applications or desktop applications. Competences 
that drive superior job performance are derived 
from knowledge and skills.  
 

 

 

 
Technical skills required of software developers 
were revealed by a study carried out by Surakka 
(2005) which grouped these skills into 5 categories: 
platform skills, programming skills, networking 
skills, database skills and distributed technology 
skills.  To learn the skills for software development, 
graduates must be trained in the academia. 
However, they are trained along with other ICT 
practitioners through a number of degree programs 
that are offered in the academia such as Computer 
Science, Information Technology, Software 
Engineering, Mathematics and Computer Science. 
This makes it difficult to recognize skills patterns 
that are unique for various SE industry roles. The 
universally recommended source of knowledge 
and skills for software engineers is known as 
Software Engineering Body of Knowledge 
(SWEBOK). This content provides a standard to 
academia for creating academic programs. As a 
result, the academic programs in which graduates 

Table 1. Areas of Competences for Software Engineering (SA, software architect; AP, application programming; TE, test 
engineering; WP, web programming; MP, mobile programming; SAD, systems administration; and PM, project 
management) (Mwakondo, 2018) 

 

TYPE 
SE Industry Roles 

TOTAL 
[Rank] 

SA AP TE WP MP SAD PM  

M
a

in
 

C
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ce
  

[%
 

p
re

v
a

le
n

ce
] D   (design) 50.00 22.12 42.16 40.51 34.58 17.61 28.21 36.00    [2] 

P   (coding) 33.20 61.06 52.61 40.51 42.36 29.55 34.29 42.72    [1] 

M  (manage) 16.80 16.81 5.22 18.99 23.05 52.84 37.50 21.28    [3] 
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s]

 Mobile 
Developers 26.30 48.30 57.10 48.40 0 7.70 14.30 38.90 

Desktop 
Developers 73.70 51.70 42.90 51.60 0 92.30 85.70 61.10 
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are trained are created in collaboration of both 
employers and academia in the industry. Fig. 1 
indicates the interaction between employers, 
institutions, and graduates as stakeholders in the 
domain industry. 

 

 

Figure 1. Graphic presentation of industry-academia 
interactions 

Each year institutions advertise programs that are 
viewed and attract potential graduates. Before they 
are enrolled for training, graduates are evaluated to 
check their readiness to undertake the program. 
Each institution in the academia has its own 
eligibility criteria to admit the students for the 
program. This makes graduates’ skills from one 
institution biased towards some of industry roles 
possibly different from another institution. 
Therefore, employers must interact with the 
programs in academia through which they can 
select ones that whose graduates’ skills are closely 
biased towards their needs and can be potential 
employees. Successfully trained graduates are 
evaluated by not only learning institutions to 
determine their level of success but also employers 
in the industry to determine their suitability for 
industry roles before they are employed.  

 

Structural Modeling of the Industry Role 
Selection System 
Unified Modeling Language (UML) is the standard 
modeling toolkit used in object-oriented modeling. 
Object modeling technique was preferred over 
structured modeling to model the system’s 
structure because currently the dominant 
programming paradigm is object-oriented 

programming (Tharawani et al., 2016). Object-
oriented programming languages, such as Java, 
.Net, PHP, Python, etc., are widely used to 
implement the object–oriented design models. 
More specifically, class diagram of the UML toolkit 
was used to produce the object model to represent 
the system’s structure in selecting industry roles for 
graduates. An object model describes the system’s 
objects and their underlying interactions. Therefore 
class diagram as a representation of object model 
provides specification for software classes and their 
interfaces in the application. Fig. 2 presents the 
object model in the form of a class diagram. The 
diagram indicates that graduates are trained by 
institutions whose training targets specific industry 
sectors. Each sector contains specific roles that are 
offered by employers. Therefore graduates 
targeting a particular sector are employed by 
employers belonging to that sector.  
 

 

Figure 2. Graphic presentation of a class model 

In addition, there is a lot of data available in each 
sector showing employees’ profiles which can be 
mined to extract rules for prediction models that 
can be used to evaluate and predict most suitable 
roles for new graduates by potential employers or 
the new graduates themselves. Class Role models 
various jobs offered by the industry employers. 
Each role has a specific set of competences which 
are conceptualized into values stored as an array 
field of the class known as roleIND. Since each role 
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belongs to a particular named sector characterized 
by a particular set of subjects, the class industry 
sector represents these details for each role. Each 
role has a particular threshold for sector subjects 
whose training is conducted at learning 
institutions. The class institution models various 
sectors in which graduates are trained through 
various subjects where they develop required 
competences for roles in the training sector. 
Cohorts in the training develop both common 
competences that apply to all and specific 
competences that are individual based. Common 
competences are conceptualized into values stored 
as an array field of the institution class known as 
secIND while the specific competences are 
calculated on demand from a graduate through the 
class graduate where academic results and scores 
in the sector subjects are derived. The class 
Administrator models an artificial entity that 
produces the prediction model through the fitModel 
method that uses the dataset for the sector in the 
Dataset class. The fitModel generates the machine 
learning model from the dataset that is used by 
both Graduate and Employer classes to predict 
suitable industry role through the predict method. 
The predict method is called repeatedly by 
evaluateSkills methods of Graduate and Employer 
class. 
 

Behavioral Modeling of Industry Role 
Selection System 
Again, Unified Modeling Language (UML) was 
adopted as the standard modeling toolkit. More 
specifically, use case diagram of the UML toolkit 
was applied to produce the use case model to 
represent the system’s behavior in selecting 
industry role for graduates. A use case model 
describes the functions of the system as viewed by 
its users, developers, and testers, and is developed 
as the initial specification of the system’s 
requirements. Fig. 3 presents the behavioral model 
in the form of a use case diagram. The use case 
model envisaged 4 kind of users for the system i.e. 
administrator, employer, graduate, and university 
institution. Employers should be able to register 
industry roles available in various sectors in which 
they operate, clearly indicating their minimum 
skills and knowledge index values requirements. 
Also, they should be able to view academic sector 
profiles for various institutions based on their 
knowledge and skills content in the exams each 
year they examine. Finally, employers should be 

able to evaluate new graduates on industry roles 
suitability. Likewise, institutions should be able to 
register their academic profiles for sectors in which 
their degree programs are based. Where for each 
sector, each year they should record knowledge 
and skills indices derived from their exam’s content 
administered to students. Also, they should be able 
to view industry roles profiles for various sectors 
based on knowledge and skills minimum indices 
required by industry. Finally, institutions should be 
able to evaluate their graduates on industry roles 
suitability before they graduate so as to assess 
themselves against industry requirements. 
Graduates, as well should be able to evaluate 
themselves against industry roles requirements to 
determine their suitability for employment. They 
should, also, be able to view industry role 
requirements for various sectors in industry as well 
as view academic performance profiles in various 
sectors for various institutions.  

 

Figure 3. Graphic presentation of use-case model 

Algorithm Design and Implementation of 
the Industry Role Selection System 
In this section, the algorithm that generates the 
machine learning objects from the dataset of 
employees’ profiles in the industry roles as well as 
algorithm that uses these machine learning objects 
to predict industry roles for new graduates is 
described. Also, the results achieved through the 
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proposed choice selection system are presented 
and discussed.  
 

Fit Algorithm explanation 
This method is responsible for fitting the data into 
the system to learn or to estimate the parameters. 
Algorithm 1 outlines algorithm of the ‘fit’ method. 
This algorithm takes in the taxonomic tree in which 
the industry roles are organized and the dataset 
containing graduate employees details to be 
learned. The algorithm is able to group the dataset 
content based on their dependent values according 
to the various sections of the taxonomic tree such as 
sub-tree (main competence), non-leaf nodes 
(proficiency), leaf nodes (specific competence), or 
tree heights. The algorithm is able to learn how 
items of the dataset belonging to various leaf nodes 
look like, if they belong to known non-leaf nodes 
and various non-leaf nodes are distinguished by 
their height levels in the tree or sub-trees. Finally, 
the algorithm is able to store the learned knowledge 
rules for that particular dataset. Therefore, the key 
aspects of this algorithm are: 1) input, 2) learning, 
and 3) storing the learned knowledge rules. Input 
to the function is the dataset, d, and taxonomy tree, 
t, which is a hierarchical data structure describing 
industry roles structure. MLA stands for Machine 
Learning Algorithm, in this case either naïve Bayes 
or support vector machines. 
 

Algorithm1: fit model algorithm 
Function Fit(taxonomy_tree t, dataset d)   

 PredictorModel = {} 
 levelPredictionObject = {} 
 NodePredictionObject = {} 
 subTreePredictionObject = {} 
1_Get taxonomy_tree’s height/levels 
 Height =t.getTreeDepth() 
 1_Get subtrees/main_competences 
  Subtrees = {} 
 Subtrees = t.getSubtrees() 
 1_For each subtree/main_competences 
 For Each subtree, m in subtrees 
 1.1_Get subtree’s leaf nodes/classes 
 Childnodes = m.getChildrenOf(d) 
 1.2_Get other subtrees’ leaf nodes/classes 
          Othernodes = t.getChildrenOf(d) - 

Childnodes 
 1,3_Create subtree’s (main_competences) 

classifier object 
 Testset1, trainset1 = splitDataset(d, 

childnodes) 

 Testset2, trainset2 = splitDataset(d, 
othernodes) 

 Testset = testset1 + testset2 
 Trainset = trainset1 + trainset2 
 PredictionModel = 

m.getPrediction(MLA, trainset) 
 ModelAccuracy = 

m.getAccuracy(predictionModel, 
testset) 

 subTreePredictionObject[m] = 
{[childnodes], 
[predictionModel],[ModelAccuracy]} 
3_For each subtree’s non-leaf 

nodes/proficiencies 
For Each subtree levels, h in Height 
 3.1_Get leaf children 
 Leafnodes = 

m.getLevelNodes(h, d) 
 3.2_Get other non-leaf nodes’ leaf 

children 
 otherLeafnodes = 

m.getChildrenOf(d) - 
leafnodes 

 3,3_Create non-leaf node’s 
(proficiency) classifier object 

 Testset1, trainset1 = 
splitDataset(d, leafnodes) 

 Testset2, trainset2 = 
splitDataset(d, 
otherLeafnodes) 

 Testset = testset1 + testset2 
 Trainset = trainset1 + trainset2 

                       PredictionModel = 
m.getPrediction(MLA, trainset) 

            ModelAccuracy = 
m.getAccuracy(predictionModel, 
testset) 

            levelPredictionObject[h] = 
{[leafnodes], 
[predictionModel],[ModelAccuracy]} 

     4_For each subtree’s leaf nodes/ 
specific_comptences 

     For Each subtree leafnode, n in 
leafnodes 

      4.1_Get leaf node/class 
      Currentnode = n 
      4.2_Get siblings 
    Othernodes = leafnodes 

- n  
      4.3_Create leaf node’s 

(Specific_comptence) classifier 
object 
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         Testset1, trainset1 = 
splitDataset(d, currentnode) 

    Testset2, trainset2 = 
splitDataset(d, 
otherLeafnodes) 

            Testset = testset1 + 
testset2 

            Trainset = trainset1 + 
trainset2 

                                  PredictionModel = 
m.getPrediction(MLA, trainset) 

                        ModelAccuracy = 
m.getAccuracy(predictionModel, 
testset) 

                       
NodePredictionObject[n] = 
{[currentnode], 
[predictionModel],[ModelAccuracy]} 

 End For 
  3_Store specific classifier objects in 
the data structure 

 PredictorModel[1] ={ 
NodePredictorObject} 

 End For 
           2_Store proficiency classifier objects in the 
data structure 
 PredictorModel[2] ={ 
levelPredictorObject} 
 End for 
          1_Store main competence classifier objects in the 
data structure 
          PredictorModel[3] 
={subtreePredictorObject} 
PredictorModel{ 1: {NodePredictorObject}, 2: 
{levelPredictorObject}, 3: {subtreePredictorObject}} 
return PredictorModel  
End function 
 

Predict Algorithm explanation 
This method is responsible for the prediction 
function of the system. Algorithm1 outlines the 
algorithm of the ‘predict’ method. The algorithm 
takes in an instance of unemployed graduate’s data 
and taxonomic tree for industry roles in which the 
graduate is seeking for employment. The algorithm 
uses the knowledge rules generated by the ‘fit’ 
algorithm to decide the role for which the graduate 
is suitable. The key aspects for this algorithm are: 1) 
input tree and graduate data, 2) load the 
knowledge rules from the store, 3) search for the 
appropriate knowledge rules to process the 
graduate data and, 4) use the rules to decide the 
industry role suitable for the graduate. 

 

 
Algorithm2: predict role algorithm 
Function Predict(taxonomy_tree t, data d) 

mainCompetencePredictorObjects = {} 
proficiencyCompetencePredictorObjects = 

{} 
specificCompetencePredictorObjects = {} 
1_Load classifier objects 
File = open(“path to PredictorModel”) 
Model = Load(File) 
1_Get taxonomy_tree’s height 
Height = t.getTreeDepth() 
1_Get taxonomy_tree’s 

subtrees/main_competences 
Subtrees = {} 
Subtrees = t.getSubtrees() 
1_For each subtree/main_competence 
For Each subtree, m in subtrees 
 2.1_Get main_competence classifier 

objects 
 mainCompetencePredictorObjects = 

Model[3] 
 currentAccuracy = 0 
 correctlabels = {} 
 2.2_Predict data’s main_competence 
          For Each 

mainCompetencePredictorObject, 
MO in 
mainCompetencePredictorObjects  

   Labels = MO[0] 
   Predictor = MO[1] 
   Accuracy = MO[2] 
   Result = Predictor(d) 
   3.1_Select main_competence 

of classifier object that predicts +ve 
   If Result ==1 
    If 

(currentAccuracy<=Accuracy) 
    

 currentAccurracy = Accuracy 
    

 correctLabels = Labels 
    

 correctSubtree = m 
    else 
    

 skip/continue 
  else 
    skip/continue 
 End For 
End For  
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1_For each subtree’s non-leaf nodes/proficiencies 
ordered in ascending order of levels 

For Each correctSubtree levels, h in Height  
 2.1_Get corresponding proficiency 

classifier objects 
proficiencyCompetencePredictorObj
ects = Model[2] 

 currentAccuracy = 0 
 correctlabels = {} 
 2.1_Predict data’s proficiency competence 
 For Each 

proficiencyCompetencePredictorObj
ect, PO in 
proficiencyCompetencePredictorObj
ects  

   Labels = PO[0] 
   Predictor = PO[1] 
   Accuracy = PO[2] 
   Result = Predictor(d) 
   3.1_Select proficiency of 

classifier object that predicts +ve 
   If Result ==1 
    If 

(currentAccuracy<=Accuracy) 
    

 currentAccurracy = Accuracy 
    

 correctLabels = Labels 
    

 correctLevelNodes = h 
    else 
    

 skip/continue 
  else 
    skip/continue 
 End For 
End For  
1_Get current leaf node’s specific_competence 

classifier objects 
For Each correctLevelNode, n in 

correctLevelNodes  
 2.1_ Get specific_competence classifier 

object 
specificCompetencePredictorObjects 
= Model[1] 

 currentAccuracy = 0 
 correctlabel = {} 
 2.1_Predict data’s specific_competence 
 For Each 

specificCompetencePredictorObject, 
SO in 
specificCompetencePredictorObjects  

   Label = SO[0] 

   Predictor = SO[1] 
   Accuracy = SO[2] 
   Result = Predictor(d) 
   3.1_Select 

specific_competence of classifier object 
that predicts +ve 

   If Result ==1 
    If 

(currentAccuracy<=Accuracy) 
    

 currentAccurracy = Accuracy 
    

 correctLabel = Label 
    else 
    

 skip/continue 
  else 
    skip/continue 
 End For 
End For 
1_Report industry role = main_competences + 

proficiency + specific_competence  
Role=maincompetence(correctSubtree)+pr

oficiency(correctLevelNodes)+specif
ic_competence(correctLabel) 

return Role 
End Function  
 

Results and Discussion 
Table 2 presents the demographic characteristic of 
the experimental datasets used in the investigation. 
Dataset2 was used as benchmark dataset where 
Shashidhar et al., (2015) on the same dataset, using 
a related system, reported performance accuracy of 
82%. Dataset1&3 were used as multiple case 
studies for different industry domains to validate 
system’s results for generalizability. The system’s 
model was generated using two induction 
algorithms, hence two versions of the model. The 
two models were experimented under similar 
conditions then the results were compared. This 
involved fitting and testing both models with 
similar training and validate sets, respectively 
through 10 iterations of 5-fold cross-validation.  
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Table 2. Demographic characteristics of 
experimental datasets 

Dataset Attributes  Instances  Classes  Levels  

Dataset1 
(SE field) 

18 113 12 3 

Dataset2 
(SE 
benchmark) 

18 279 12 3 

Dataset3 
(AL field) 

14 50 7 3 

 
Table 3 presents results of this experiment that 
indicated there was a difference in mean 
performance between SVM and naïve Bayes 
models based system (56.79, 52.54 in dataset1 and 
78.77, 63.93 in dataset2, respectively) which 
suggested that SVM model was better than naïve 
Bayes. Further investigation was conducted to test 
whether the differences (4.25 and 14.84) were real 
and significant. 
  
This test was conducted using paired sample t-test 
procedure. A paired sample t-test was conducted to 
test the hypothesis that system performance 
difference was not significant. For this type of test 
to be valid, conditions for tests were checked 
(homogeneity and normality of data). The results 
indicate the difference was real and significant 
based on 10 iterations of 5-fold cross validation 
tests (paired dataset1: t = -2.09; df = 49; p = 0.042 
and paired dataset2: t = -15.02; df = 49; p = 0.000, 
respectively).   
 

Table 3.  Model’s mean (± STDev) performance 
validation 

 
5-Fold cross validation results (%) 

Test 
fold 

SE Benchmark Dataset SE Field Dataset 

 
Naïve 
Bayes SVM 

Naïve 
Bayes SVM 

Fold_1 60.8±3.4 
(n=10) 

73.3±3.7 
 (n = 10) 

49.5±7.5 
(n=10) 

55.9±9.6 
(n=10) 

Fold_2 
 

63.0±3.7 
(n=10) 

77.8±4.2 
(n=10) 

48.9±11.3 
(n=10) 

59.4±5.0 
(n=10) 

Fold_3 
 

66.7±5.9 
(n=10) 

80.2±6.0 
(n=10) 

56.2±7.2 
(n=10) 

58.1±10.7 
(n=10) 

Fold_4 
 

63.4±5.5 
(n=10) 

81.9±2.6 
(n=10) 

51.2±10.5 
(n=10) 

53.1±8.5 
(n=10) 

Fold_5 
 

65.8±6.2 
(n=10) 

80.7±5.8 
(n=10) 

56.8±14.0 
(n=10) 

57.5±12.7 
(n=10) 

Overall  
 

63.93±5.3
0 (N=50) 

78.77±5.4
2 (N=50) 

52.54±10.
56 (N=50) 

56.79±9.48 
(N=50) 

 

To confirm the difference was not due to any other 
factor but only machine learning construct 
difference, ANOVA test was conducted to rule out 
the effect of fold to fold variations. One-way 
ANOVA is a statistical procedure used to test 
whether the means of 2 or more groups, in this case 
folds, were significantly different. For this type of 
test to be valid, conditions for ANOVA that must 
be satisfied are homogeneity of group variance and 
normality of data was done using the Levene’s test 
where the condition for homogeineity of group 
variances and the condition for difference of group 
means were both met (p = 0.495 and p = 0.135, 
respectively). The results indicate the fold 
variances were equal and, in fact, means of the fold 
scores were not different and therefore the 
seemingly difference between the two models in 
Table 3 above was not due to effect of fold to fold 
variations. This was enough reason to select SVM 
model as the best classifier for the system.   
 
Finally, test of the quality of the system using 
appropriate quality measures was required. This 
was after realization that accuracy alone sometimes 
could be misleading as sometimes a model with 
relatively high accuracy was likely to predict the 
‘not so important class labels’ fairly accurately 
while making all sorts of mistakes on classes that 
were actually critical. As a result, other 
performance measures such as precision, recall and 
F1 scores were incorporated. The aim was to study 
the ability of the model to find all the positive 
instances correctly (recall) and ability not to label 
negative instances as positive (precision) or  
weighted average score of the two (F1). Table 4 
illustrates results of the model performance along 4 
quality metrics and across 3 datasets, and presents 
performance results along hierarchical levels across 
the 3 datasets. In each case, the model reported 
equal performance in both accuracy and recall. 
However, its ability not to label negative classes as 
positive was not as good as its ability to find all 
positive classes correctly which was equally good 
(precision = 66%, recall = 69%). 
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Table 4. Comparison of performance across three 
datasets 

Performance 
Metric 

SE field 
Dataset 
(Research) 

SE lit. Dataset 
(Benchmark)  

AL field 
Dataset  
(Validation)  

Mean  

Accuracy 0.59 0.85 0.65 0.69 

Precision 0.62 0.83 0.54 0.66 

Recall 0.59 0.85 0.65 0.69 

F1_score 0.57 0.83 0.56 0.65 

 
On average, model performance seemed to 
improve upward the hierarchy levels consistent 
with other models (Clare & King, 2003; Barbedo & 
Lopes, 2006). Model’s performance seemed to be 
very high in the benchmark dataset as a result of 
having more instances whose classes had very high 
accuracies (class 10 & 11) and fewer instances 
whose classes had very low accuracies (class 7 & 8). 
This was not the case with other two datasets where 
distribution differences of classes with very high 
and very low accuracies were not high. In the 
Benchmark dataset where performance was 85%, 
high accuracy (100%) class (class11) had the highest 
number of instances (size=11) while low accuracy 
(5%) class (class7) had the lowest number of 
instances (size=2). In Research dataset where 
performance was 59%, high accuracy (93.4%) class 
(class7) had moderate number of instances (size=3) 
while low accuracy (5%) class (class3) had 
moderate number of instances (size=1). In 
Validation dataset where performance was 65%, 
high accuracy (100%) class (class1&5) had 
moderate number of instances (size=2) while low 
accuracy (5%) class (class2&7) had moderate 
number of instances (size=2). Model performance 
in both Research and Validation datasets seemed to 
be fairly good (59% and 65%, respectively). These 
results indicate the best generalization 
performance as an average performance calculated 
across the 3 datasets. In this case, along hierarchical 
levels the best average performance accuracy of the 
model was 67% while general average performance 
was 69%. Therefore, it can confidently be claimed 
that the best performance of the model was 67%. 

 

Conclusion 
This paper has revealed that searching for a job 
without prior information on the most appropriate 
job one is suitable for leads to blind search. Blind 
search can put graduates at risk of long term 
unemployment, job mismatch and as well as 
overloading employers with many applications 
during job selection. As a result, this paper has 

presented a design of a system for industry role 
selection, representing both its structure and 
behavior and more specifically modeling the 
system’s structure using class diagram as well as 
modeling system’s behavior using use case 
diagram. Two important aspects of the system’s 
behavior when selecting appropriate industry role 
with the help of machine learning techniques were 
presented as design algorithms. Experimental 
design was adopted to test the systems relevancy 
where the findings were promising. Hence, the 
paper’s findings is a greater step forward towards 
reducing both low job satisfaction and long term 
unemployment that is one of the causes of social 
and economic pain both in Kenya and around the 
world. 
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